If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7h^2-9=0
a = 7; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·7·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*7}=\frac{0-6\sqrt{7}}{14} =-\frac{6\sqrt{7}}{14} =-\frac{3\sqrt{7}}{7} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*7}=\frac{0+6\sqrt{7}}{14} =\frac{6\sqrt{7}}{14} =\frac{3\sqrt{7}}{7} $
| -1/x+2=7/5x+10+1 | | 4x^2-16×+8=-1(3×-1)*(x+1) | | F(x)=7x^2-5 | | 3m-(m+7)=m+14 | | x^2-9x-8=-11x | | 3x2−20=652 | | (2x-5)=5x-28 | | 8b+2=3 | | 8b+1=5 | | 8x+5=11+3x | | 6x+9x-21=84-6x | | 3t+4=25–2t | | x^2+24x-172=0 | | x+(3x+2(2))=107 | | 24y+36=y | | 2+(x+2)=3x-13 | | k/17=13 | | x+4/2=6-x-1/5 | | 2x+(x+6)=175 | | x+4/2=6-(x-1/5) | | 5(n-2)=35n= | | 5x-(2x-4)=119 | | 9x/12+4=x-8 | | (2x+3)+x=72 | | x^2+33x+34=15x-11 | | x+2/8=1-x+5/8 | | (x+1)+(x+2)+(x+3)+4=70 | | 5m+7=6m+11 | | 2x+2(3x-75)=370 | | 3x+62=920 | | 3(69/17)+2y=9 | | -2x^2+2400x=0 |